24,507 research outputs found

    Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for P 1 a,b,c

    Full text link
    This paper gives a new way of constructing Landau–Ginzburg mirrors usingdeformation theory of Lagrangian immersions motivated by the works of Seidel,Strominger –Yau–Zaslow and Fukaya–Oh–Ohta–Ono. Moreover, we construct acanonical functor from the Fukaya category to the mirror category of matrixfactorizations. This functor derives homological mirror symmetry under someexplicit assumptions.As an application, the construction is applied to spheres with three orbifoldpoints to produce their quantum-corrected mirrors and derive homological mirrorsymmetry. Furthermore, we discover an enumerative meaning of the (inverse)mirror map for elliptic curve quotients

    Radioactive silicon as a marker in thin-film silicide formation

    Get PDF
    A new technique using radioactive 31Si (half-life =2.62 h), formed in a nuclear reactor, as a marker for studying silicide formation is described. A few hundred angstroms of radioactive silicon is first deposited onto the silicon substrate, followed immediately by the deposition of a few thousand angstroms of the metal. When the sample is heated, a silicide is first formed with the radioactive silicon. Upon further silicide formation, this band of radioactive silicide can move to the surface of the sample if silicide formation takes place by diffusion of the metal or by silicon substitutional and/or vacancy diffusion. However, if the band of radioactive silicide stays at the silicon substrate interface it can be concluded that silicon diffuses by interstitial and/or grain-boundary diffusion. This technique was tested by studying the formation of Ni2Si on silicon at 330 °C. From a combination of ion-beam sputtering, radioactivity measurement, and Rutherford backscattering it is found that the band of radioactive silicide moves to the surface of the sample during silicide formation. From these results, implanted noble-gas marker studies and the rate dependence of Ni2Si growth on grain size, it is concluded that nickel is the dominant diffusing species during Ni2Si formation, and that it moves by grain-boundary diffusion

    New variables, the gravitational action, and boosted quasilocal stress-energy-momentum

    Full text link
    This paper presents a complete set of quasilocal densities which describe the stress-energy-momentum content of the gravitational field and which are built with Ashtekar variables. The densities are defined on a two-surface BB which bounds a generic spacelike hypersurface ÎŁ\Sigma of spacetime. The method used to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a suitable covariant action principle for the Ashtekar variables. As such, the theory presented here is an Ashtekar-variable reformulation of the metric theory of quasilocal stress-energy-momentum originally due to Brown and York. This work also investigates how the quasilocal densities behave under generalized boosts, i. e. switches of the ÎŁ\Sigma slice spanning BB. It is shown that under such boosts the densities behave in a manner which is similar to the simple boost law for energy-momentum four-vectors in special relativity. The developed formalism is used to obtain a collection of two-surface or boost invariants. With these invariants, one may ``build" several different mass definitions in general relativity, such as the Hawking expression. Also discussed in detail in this paper is the canonical action principle as applied to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and improved quite a bit. To appear in Classical and Quantum Gravit

    Epitaxial growth of deposited amorphous layer by laser annealing

    Get PDF
    We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing

    Hamiltonians for a general dilaton gravity theory on a spacetime with a non-orthogonal, timelike or spacelike outer boundary

    Get PDF
    A generalization of two recently proposed general relativity Hamiltonians, to the case of a general (d+1)-dimensional dilaton gravity theory in a manifold with a timelike or spacelike outer boundary, is presented.Comment: 17 pages, 3 figures. Typos correcte

    Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production

    Get PDF
    Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate their C, N, and O yields. Using the Monash University Stellar Evolution code we computed and analysed the evolution of stars of metallicity Z = 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars lose most of their envelopes before their cores reach the Chandrasekhar mass, so our standard models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M_sun for our 4 M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Our results have implications for the early chemical evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&
    • …
    corecore